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N is the set of natural numbers, 1,2,3,4,5,...

Z is the set of integers
...—b,—4,-3,-2,-1,0,1,2,3,4,5,....

Q is the set of rational numbers, i.e. fractions and
integers.

R is the set of real numbers. Can be identified with the
set of points on a straight line, the real number line.
Irrational numbers are real numbers that are not
rational.

C is the set of complex numbers. Can be identified with
the set of points in the plane, the complex plane.
Complex numbers that are not real are called imaginary.
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N is the set of natural numbers, 1,2,3,4,5,...

Z is the set of integers
...—b5,—4,-3,-2,-1,0,1,2,3,4,5,....

Q is the set of rational numbers, i.e. fractions and
integers.

R is the set of real numbers. Can be identified with the
set of points on a straight line, the real number line.
Irrational numbers are real numbers that are not
rational.

C is the set of complex numbers. Can be identified with
the set of points in the plane, the complex plane.
Complex numbers that are not real are called imaginary.

Wehave NCZC QCRCC.
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1. a+b=b+a (the commutative law of addition) e et a:
2. (a+b)+c=a+ (b+c) (the associative law of
addition)
3. ab=ba (the commutative law of multiplication)
4. (ab)c = a(bc) (the associative law of multiplication)
5. a(b+c)=ab+ac (the distributive law)
6. a+0=a
7. la=a
8. a+x =0 has precisely one solution for x
9. ax =1 has precisely one solution for x,  provided

a#£0
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What is a Cauchy sequence?

» A Cauchy sequence is a sequence of numbers
(Xn)roy = X1, X0, X3, .-+, Xn, . . . Satisfying x, — xmn — 0
for n,m — oo.

» That every Cauchy sequence has a limit means that

Xp — xm — 0 for n, m — oo implies that there exists a
number x, such that x, — x for n — 0.

» The claim: Every Cauchy sequence has a limit is valid
for R and C, not for Q.
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What is a Cauchy sequence?
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A Cauchy sequence is a sequence of numbers

(Xn)roy = X1, X0, X3, .-+, Xn, . . . Satisfying x, — xmn — 0
for n,m — oo.

That every Cauchy sequence has a limit means that
Xp — xm — 0 for n, m — oo implies that there exists a
number x, such that x, — x for n — 0.

The claim: Every Cauchy sequence has a limit is valid
for R and C, not for Q.

C has the very important property that every
polynomial of degree > 1 has at least one root. (The
Fundamental Theorem of Algebra).
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Description of the complex numbers
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» As a set C equals the set of points in the plane. The
plane is identified with R?, thus C = R?.

» The point (ai, a2) is written a; 4+ api. Thus / is the
point (0,1) and 1 is the point (1,0).

» Definition of addition. If a = a; + a»i and b = by + byi
then a+b= (a1 +b1)+ (a2 + bo) .

» Definition of multiplication. If a = a; + a»/ and
b = b; + byi then

Description of the
complex numbers

ab = (a1 + azi) (bl —+ b2i) = (albl — azbz) + (alb2 + agbl)i

» It follows that /2 = —1.
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» The solution to the equation az = 1 exists if a # 0 and
is uniquely determined. It is denoted a~! or %

» By g we mean ba~!l. It is the solution to the equation Division?
az=>b



Division?
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» The solution to the equation az = 1 exists if a # 0 and
is uniquely determined. It is denoted a~! or %

> By g we mean ba~!. It is the solution to the equation pivgon?
az=>, S

» The usual method of calculating g : ‘Vf‘;
2431 (2430 (=4-7)) _ (2+3i)(—4—7i) om
—44+70 (4TI (4TI (—a) = (7i)°

(243i)(=4—7i)) 13—-26i 1 2.
fr— = — — —

16 + 49 65 5 5
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Real and imaginary parts etc.
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> Real part: Re(a; + iaz) = a;1. Imaginary part:
Im <al + 132) = 32 Real and imaginary
. p— - . . partsetc.
» Complex conjugate: 3 =a; +jap = a1 — iap

» a+b=2a+band (ab) =3ab

Modulus, absolute value: |a| = |a; + ia| = /a2 + a3

>
> |ab] = || [b|
» The triangle inequality: |a+ b| < |a| + |b|
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» Let r = |a| and v be an angle measured from the
positive real axis to the line connecting 0 and a
(measured positive in the counterclockwise direction).

a

Polar form |

» v is an argument for a. Notation: arg(a). The set of
arguments for ais {v+p2m|p e Z}.

» Any complex number can be written in polar form:
a=r-(cosv+isinv), where r is the modulus and v is
an argument of a.
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» The principal value: Arg (a) is the uniquely given
argument in the interval |—7t, 7.

» By arg, (a) we mean the unique argument in the
interval |T, T + 27|, thus Arg (a) = arg_, (a).

» arg(ab) = arga+argh
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» The principal value: Arg (a) is the uniquely given
argument in the interval |—7t, 7.

» By arg, (a) we mean the unique argument in the
interval |T, T + 27|, thus Arg (a) = arg_, (a).
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» The principal value: Arg (a) is the uniquely given
argument in the interval |—7t, 7.

» By arg, (a) we mean the unique argument in the
interval |T, T + 27|, thus Arg (a) = arg_, (a).

> arg (ab) = arga+argh Polar o
» arg(a") = narga

> arg (%) =arga—arghb
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» The principal value: Arg (a) is the uniquely given
argument in the interval |—7t, 7.

» By arg, (a) we mean the unique argument in the
interval |T, T + 27|, thus Arg (a) = arg_, (a).
» arg (ab) = arga+targh Folerform 1
> arg(a") = narga
> arg (%) =arga—argh
» These must be properly understood: Thus
arg (ab) = arg a + arg b means that one of the

arguments for ab is obtained by adding an argument for
a and an argument for b.
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The Complex Exponential
» The real exponential function exp has the fundamental
property
exp (x+y) =exp (x)exp (y)
ie. T = eXe¥ forall x,y € R.
» Definition. If z= x4+ iy (x,y € R) then
exp (z) = expx - (cosy +isiny)

> |etY| =e* andarg (eX7Y) =y when x,y € R.
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The Complex Exponential

>

The real exponential function exp has the fundamental
property
exp (x +y) = exp (x) exp (y)
ie. T = eXe¥ forall x,y € R.
Definition. If z= x4+ iy (x,y € R) then

exp (z) = expx - (cosy +isiny)

|et¥| = e* and arg (e*Y) =y when x,y € R.
exp(z1+2) =expzy -expz forall z;,z € C, i.e.
eZ1+Z2 = eZle?2
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The Complex Exponential
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» The real exponential function exp has the fundamental
property Ruls for aditian an
exp (x +y) = exp (x) exp (y) ot s o
ie. T = eXe¥ forall x,y € R. o
» Definition. If z= x4+ iy (x,y € R) then

exp (z) = expx - (cosy +isiny) :“ .
, ‘ex+iy‘ — & and arg (ex+iy) =y when x,y € R. ih‘pc"‘t"':‘
The polar form onc

> exp(z1+2z) =expzi-expz forall z1,z € C, e
ezl+22:ezle22_ De Moivre's formula

» Proof: Let z; = x; + iy; and zo = x» + iy», then

‘ezl . ezz| — |ezl| . ‘ezz| _ ‘ex1+/}/1‘ . ‘eX2+/Y2‘ — X1 . ¥
— et — |gataetility)| — ‘ezl+22’
arg (e” - e®?) = arg(e™)+arg(e®?)=arg (eX1+iyl) + arg (ex2+i}’2)

= n +y2 = arg (e>q+x2+i(}’1+)/2)> = arg (eZﬁZ?)



The polar form once more i Al

» The polar form for the number a having modulus r and Sl
Rules for addition and
. multiplication
argument v was written L
sequence?

a=r(cosv+isinv)
Division?
Real and imaginary

In the future we shall write: IS Gl

Polar form |
Polar form Il

The Complex
Exponential

The polar form once
more
De Moivre’s formula

a=rexp(iv) = re"
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» The polar form for the number a having modulus r and TE T
argument v was written

sequence?

a=r(cosv+isinv)
Division?
Real and imaginary
;

In the future we shall write: par

Pol. rm |
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. The Complex
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a=rexp(iv) =re The polar form once
more
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» Example. The polar form for —v/3 — i. Modulus:

2
\/(-ﬁ) + (—1)2 = 2. An argument is —%”. Thus

—V3—i=2exp (—i5§> —2e 1%




De Moivre's formula

» For ne€ N og 0 € R galder

(cosf + isin®)" = cos nb + isin nf
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De Moivre's formula
» For n€ N og 6 € R glder
(cos@ + isin®)" = cos nb + isin nd

» Proof:
(cosf+isin0)" = (e)" = e = cos nf + i sin nf
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De Moivre's formula
» For n€ N og 6 € R glder
(cos@ + isin®)" = cos nb + isin nd

» Proof:
(cosf+isin0)" = (e)" = e = cos nf + i sin nf
» Example.

cos3x = Re(cos3x+isin3x) =Re ((cosx + isin x)3)
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Exponegtial
= Re (cos3 x + 3i cos® xsin x — 3cos xsin® x — isi )@)

3 2 3

= cos” x — 3cosxsin® x = cos x—3cosx(1—co

3

4 cos’ x — 3 cos x

moré

D&Moiwe’s formula
SQ X)'



De Moivre's formula
» For n€ N og 6 € R glder
(cos + isin®)" = cosnf + isin nf

Preben Alsholm

» Proof:
(cosf+isin0)" = (e)" = e = cos nf + i sin nf
» Example.

cos3x = Re(cos3x+isin3x) =Re ((cosx + isin x)3)

Re (cos3 X+ 3/ cos? x sin x — 3cos x sin® x — isin® x)

. D&Moiwe's formula
cos® x — 3 cos xsin? x = cos® x — 3 cos x (1 — cog? xj
4 cos® x — 3cos x

» By replacing Re with Im above we get the formula

sin3x = 3cos® xsinx — sin’ x

= 3 (1 —sin2x) sin x — sin’ x

= —4sin®x+3sinx
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