Complex Numbers

Preben Alsholm

September 4, 2008

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more

De Moivre's formula

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• N is the set of natural numbers, $1, 2, 3, 4, 5, \ldots$

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once

De Moivre's formula

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ● ●

- N is the set of natural numbers, $1, 2, 3, 4, 5, \ldots$
- ► Z is the set of integers

... - 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once

more D. M.: J. C. J.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- ▶ *N* is the set of natural numbers, 1, 2, 3, 4, 5, ...
- Z is the set of integers
 ... 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
- ► Q is the set of rational numbers, i.e. fractions and integers.

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential

The polar form once more

De Moivre's formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- ▶ *N* is the set of natural numbers, 1, 2, 3, 4, 5, ...
- ► Z is the set of integers ... - 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
- Q is the set of rational numbers, i.e. fractions and integers.
- R is the set of real numbers. Can be identified with the set of points on a straight line, the real number line. *Irrational* numbers are real numbers that are not rational.

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

- ▶ *N* is the set of natural numbers, 1, 2, 3, 4, 5, ...
- ► Z is the set of integers ... - 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
- Q is the set of rational numbers, i.e. fractions and integers.
- R is the set of real numbers. Can be identified with the set of points on a straight line, the real number line. *Irrational* numbers are real numbers that are not rational.
- C is the set of complex numbers. Can be identified with the set of points in the plane, the complex plane.
 Complex numbers that are not real are called *imaginary*.

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

- ▶ *N* is the set of natural numbers, 1, 2, 3, 4, 5, ...
- ► Z is the set of integers
 ... 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
- Q is the set of rational numbers, i.e. fractions and integers.
- R is the set of real numbers. Can be identified with the set of points on a straight line, the real number line. *Irrational* numbers are real numbers that are not rational.
- C is the set of complex numbers. Can be identified with the set of points in the plane, the complex plane.
 Complex numbers that are not real are called *imaginary*.
- We have $N \subset Z \subset Q \subset R \subset C$.

Preben Alsholm

Complex Numbers

Sets of numbers

Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

1. a + b = b + a (the commutative law of addition)

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II

The Complex Exponential

The polar form once more

De Moivre's formula

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ ・ 日 ・

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I

Polar form II

The Complex Exponential

The polar form once more

De Moivre's formula

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once

De Moivre's formula

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication)

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law)

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law) 6. a + 0 = a

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law) 6. a + 0 = a

7. 1*a* = *a*

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law)

7. 1a = a

8. a + x = 0 has precisely one solution for x

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law)

6. a + 0 = a

7. 1a = a

8. a + x = 0 has precisely one solution for x

9. ax = 1 has precisely one solution for x, provided $a \neq 0$

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

a + b = b + a (the commutative law of addition)
 (a + b) + c = a + (b + c) (the associative law of addition)

3. ab = ba (the commutative law of multiplication)

4. (ab) c = a (bc) (the associative law of multiplication) 5. a (b + c) = ab + ac (the distributive law)

6. a + 0 = a

7. 1a = a

8. a + x = 0 has precisely one solution for x

9. ax = 1 has precisely one solution for x, provided $a \neq 0$

10. Every Cauchy sequence has a limit

Preben Alsholm

Complex Numbers

Sets of number

Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▶ A Cauchy sequence is a sequence of numbers $(x_n)_{n=1}^{\infty} = x_1, x_2, x_3, \dots, x_n, \dots$ satisfying $x_n - x_m \to 0$ for $n, m \to \infty$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once

more

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ▶ A Cauchy sequence is a sequence of numbers $(x_n)_{n=1}^{\infty} = x_1, x_2, x_3, \dots, x_n, \dots$ satisfying $x_n - x_m \to 0$ for $n, m \to \infty$.
- That every Cauchy sequence has a limit means that x_n − x_m → 0 for n, m → ∞ implies that there exists a number x, such that x_n → x for n → ∞.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and nultiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- ▶ A Cauchy sequence is a sequence of numbers $(x_n)_{n=1}^{\infty} = x_1, x_2, x_3, \dots, x_n, \dots$ satisfying $x_n - x_m \to 0$ for $n, m \to \infty$.
- That every Cauchy sequence has a limit means that x_n − x_m → 0 for n, m → ∞ implies that there exists a number x, such that x_n → x for n → ∞.
- The claim: Every Cauchy sequence has a limit is valid for R and C, not for Q.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and nultiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

- ▶ A Cauchy sequence is a sequence of numbers $(x_n)_{n=1}^{\infty} = x_1, x_2, x_3, \dots, x_n, \dots$ satisfying $x_n - x_m \to 0$ for $n, m \to \infty$.
- That every Cauchy sequence has a limit means that x_n − x_m → 0 for n, m → ∞ implies that there exists a number x, such that x_n → x for n → ∞.
- The claim: Every Cauchy sequence has a limit is valid for R and C, not for Q.
- ► C has the very important property that every polynomial of degree ≥ 1 has at least one root. (The Fundamental Theorem of Algebra).

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and nultiplication

What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

• As a set C equals the set of points in the plane. The plane is identified with R^2 , thus $C = R^2$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more

De Moivre's formula

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

- ► As a set C equals the set of points in the plane. The plane is identified with R², thus C = R².
- ► The point (a₁, a₂) is written a₁ + a₂i. Thus i is the point (0, 1) and 1 is the point (1, 0).

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- As a set C equals the set of points in the plane. The plane is identified with R², thus C = R².
- The point (a₁, a₂) is written a₁ + a₂i. Thus i is the point (0, 1) and 1 is the point (1, 0).
- ▶ Definition of addition. If a = a₁ + a₂i and b = b₁ + b₂i then a + b = (a₁ + b₁) + (a₂ + b₂) i.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form I The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- As a set C equals the set of points in the plane. The plane is identified with R², thus C = R².
- ► The point (a₁, a₂) is written a₁ + a₂i. Thus i is the point (0, 1) and 1 is the point (1, 0).
- Definition of addition. If a = a₁ + a₂i and b = b₁ + b₂i then a + b = (a₁ + b₁) + (a₂ + b₂) i.
- ▶ Definition of multiplication. If a = a₁ + a₂i and b = b₁ + b₂i then

 $ab = (a_1 + a_2i)(b_1 + b_2i) = (a_1b_1 - a_2b_2) + (a_1b_2 + a_2b_1)i$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- ► As a set C equals the set of points in the plane. The plane is identified with R², thus C = R².
- ► The point (a₁, a₂) is written a₁ + a₂i. Thus i is the point (0, 1) and 1 is the point (1, 0).
- Definition of addition. If a = a₁ + a₂i and b = b₁ + b₂i then a + b = (a₁ + b₁) + (a₂ + b₂) i.
- Definition of multiplication. If a = a₁ + a₂i and b = b₁ + b₂i then

$$ab = (a_1 + a_2i)(b_1 + b_2i) = (a_1b_1 - a_2b_2) + (a_1b_2 + a_2b_1)i_2$$

• It follows that $i^2 = -1$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Division?

► The solution to the equation az = 1 exists if a ≠ 0 and is uniquely determined. It is denoted a⁻¹ or 1/a.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc. Polar form I The Complex Exponential The polar form once more

De Moivre's formula

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Division?

- ► The solution to the equation az = 1 exists if a ≠ 0 and is uniquely determined. It is denoted a⁻¹ or 1/2.
- By $\frac{b}{a}$ we mean ba^{-1} . It is the solution to the equation az = b

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moisura's formula

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Division?

- ► The solution to the equation az = 1 exists if a ≠ 0 and is uniquely determined. It is denoted a⁻¹ or 1/a.
- By $\frac{b}{a}$ we mean ba^{-1} . It is the solution to the equation az = b

• The usual method of calculating $\frac{b}{a}$:

$$\frac{2+3i}{-4+7i} = \frac{(2+3i)(-4-7i)}{(-4+7i)(-4-7i)} = \frac{(2+3i)(-4-7i)}{(-4)^2 - (7i)^2}$$
$$= \frac{(2+3i)(-4-7i)}{16+49} = \frac{13-26i}{65} = \frac{1}{5} - \frac{2}{5}i$$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once more De Moivre's formula

► Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential

The polar form once more

De Moivre's formula

- ► Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$
- Complex conjugate: $\overline{a} = \overline{a_1 + ia_2} = a_1 ia_2$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential

The polar form once more

De Moivre's formula

- ▶ Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$
- Complex conjugate: $\overline{a} = \overline{a_1 + ia_2} = a_1 ia_2$
- $\overline{a+b} = \overline{a} + \overline{b}$ and $\overline{(ab)} = \overline{a}\overline{b}$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form I

Polar form II

The Complex

The polar form once

more

De Moivre's formula

- ▶ Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$
- Complex conjugate: $\overline{a} = \overline{a_1 + ia_2} = a_1 ia_2$

•
$$\overline{a+b} = \overline{a} + \overline{b}$$
 and $\overline{(ab)} = \overline{a}\overline{b}$

▶ Modulus, absolute value: $|a| = |a_1 + ia_2| = \sqrt{a_1^2 + a_2^2}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form

Polar form

The Complex

Exponential

I he polar form once more

De Moivre's formula

- ▶ Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$
- Complex conjugate: $\overline{a} = \overline{a_1 + ia_2} = a_1 ia_2$

•
$$\overline{a+b} = \overline{a} + \overline{b}$$
 and $\overline{(ab)} = \overline{a}\overline{b}$

Modulus, absolute value: |a| = |a₁ + ia₂| = √a₁² + a₂²
 |ab| = |a| |b|

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form

Polar form

The Complex

Exponential

The polar form once more

De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ▶ Real part: $\operatorname{Re}(a_1 + ia_2) = a_1$. Imaginary part: $\operatorname{Im}(a_1 + ia_2) = a_2$
- Complex conjugate: $\overline{a} = \overline{a_1 + ia_2} = a_1 ia_2$

•
$$\overline{a+b} = \overline{a} + \overline{b}$$
 and $\overline{(ab)} = \overline{a}\overline{b}$

- ▶ Modulus, absolute value: $|a| = |a_1 + ia_2| = \sqrt{a_1^2 + a_2^2}$
- $\blacktriangleright |ab| = |a||b|$
- The triangle inequality: $|a + b| \le |a| + |b|$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form

Polar form I

The Complex

exponential

The polar form once more

De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Let r = |a| and v be an angle measured from the positive real axis to the line connecting 0 and a (measured positive in the counterclockwise direction).

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II The Complex Exponential The polar form once more De Moivre's formula

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Let r = |a| and v be an angle measured from the positive real axis to the line connecting 0 and a (measured positive in the counterclockwise direction).

v is an argument for a. Notation: arg(a). The set of arguments for a is {v + p2π | p ∈ Z }.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II The Complex Exponential The polar form once more De Moivre's formula

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Let r = |a| and v be an angle measured from the positive real axis to the line connecting 0 and a (measured positive in the counterclockwise direction).

- v is an argument for a. Notation: arg(a). The set of arguments for a is {v + p2π | p ∈ Z }.
- Any complex number can be written in polar form: a = r · (cos v + i sin v), where r is the modulus and v is an argument of a.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II The Complex Exponential The polar form once more De Moivre's formula

► The principal value: Arg (a) is the uniquely given argument in the interval]−π, π].

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- The principal value: Arg (a) is the uniquely given argument in the interval]-π, π].
- By arg_τ (a) we mean the unique argument in the interval]τ, τ + 2π], thus Arg (a) = arg_{−π} (a).

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- The principal value: Arg (a) is the uniquely given argument in the interval]-π, π].
- By arg_τ (a) we mean the unique argument in the interval]τ, τ + 2π], thus Arg (a) = arg_{−π} (a).
- $\arg(ab) = \arg a + \arg b$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

- The principal value: Arg (a) is the uniquely given argument in the interval]-π, π].
- By arg_τ (a) we mean the unique argument in the interval]τ, τ + 2π], thus Arg (a) = arg_{−π} (a).

•
$$arg(ab) = arga + argb$$

• $\arg(a^n) = n \arg a$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

- The principal value: Arg (a) is the uniquely given argument in the interval]-π, π].
- By arg_τ (a) we mean the unique argument in the interval]τ, τ + 2π], thus Arg (a) = arg_{−π} (a).

•
$$arg(ab) = arga + argb$$

•
$$\operatorname{arg}\left(a^{n}
ight) = n \operatorname{arg} a$$

• $\arg\left(\frac{a}{b}\right) = \arg a - \arg b$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- The principal value: Arg (a) is the uniquely given argument in the interval]-π, π].
- By arg_τ (a) we mean the unique argument in the interval]τ, τ + 2π], thus Arg (a) = arg_{−π} (a).

•
$$arg(ab) = arga + argb$$

•
$$\operatorname{arg}\left(a^{n}
ight) = n \operatorname{arg} a$$

- $\arg\left(\frac{a}{b}\right) = \arg a \arg b$
- These must be properly understood: Thus arg (ab) = arg a + arg b means that one of the arguments for ab is obtained by adding an argument for a and an argument for b.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form I

Polar form II

The Complex Exponential The polar form once more De Moivre's formula

The real exponential function exp has the fundamental property

$$\exp(x + y) = \exp(x) \exp(y)$$

i.e. $e^{x+y} = e^x e^y$ for all $x, y \in R$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form I

Polar form I

The Complex Exponential

The polar form once more De Moivre's formula

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

 The real exponential function exp has the fundamental property

$$\exp(x+y) = \exp(x)\exp(y)$$

i.e. $e^{x+y} = e^x e^y$ for all $x, y \in R$.

• Definition. If z = x + iy $(x, y \in R)$ then

$$\exp(z) = \exp x \cdot (\cos y + i \sin y)$$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form I

Polar form I

The Complex Exponential

The polar form once more De Moivre's formula

 The real exponential function exp has the fundamental property

$$\exp(x+y) = \exp(x)\exp(y)$$

i.e. $e^{x+y} = e^x e^y$ for all $x, y \in R$.

• Definition. If z = x + iy (x, $y \in R$) then

$$\exp(z) = \exp x \cdot (\cos y + i \sin y)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ $|e^{x+iy}| = e^x$ and $\arg(e^{x+iy}) = y$ when $x, y \in R$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc

Polar form I

Polar form I

The Complex Exponential

The polar form once more De Moivre's formula

 The real exponential function exp has the fundamental property

$$\exp(x+y) = \exp(x)\exp(y)$$

i.e. $e^{x+y} = e^x e^y$ for all $x, y \in R$.

• Definition. If z = x + iy (x, $y \in R$) then

$$\exp(z) = \exp x \cdot (\cos y + i \sin y)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ $|e^{x+iy}| = e^x$ and $\arg(e^{x+iy}) = y$ when $x, y \in R$.
- ► $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$ for all $z_1, z_2 \in C$, i.e. $e^{z_1+z_2} = e^{z_1}e^{z_2}$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Pool and imagin

parts etc.

Polar form I

Polar form I

The Complex Exponential

The polar form once more De Moivre's formula

 The real exponential function exp has the fundamental property

$$\exp(x+y) = \exp(x)\exp(y)$$

i.e. $e^{x+y} = e^x e^y$ for all $x, y \in R$.

• Definition. If z = x + iy (x, $y \in R$) then

$$\exp(z) = \exp x \cdot (\cos y + i \sin y)$$

- ▶ $|e^{x+iy}| = e^x$ and $\arg(e^{x+iy}) = y$ when $x, y \in R$.
- ▶ $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$ for all $z_1, z_2 \in C$, i.e. $e^{z_1+z_2} = e^{z_1}e^{z_2}$.

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division?

Real and imaginary parts etc.

Polar form

Polar form I

The Complex Exponential

The polar form once more De Moivre's formula

• Proof: Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then

$$\begin{aligned} |e^{z_1} \cdot e^{z_2}| &= |e^{z_1}| \cdot |e^{z_2}| = |e^{x_1 + iy_1}| \cdot |e^{x_2 + iy_2}| = e^{x_1} \cdot e^{x_2} \\ &= e^{x_1 + x_2} = |e^{x_1 + x_2 + i(y_1 + y_2)}| = |e^{z_1 + z_2}| \\ \arg(e^{z_1} \cdot e^{z_2}) &= \arg(e^{z_1}) + \arg(e^{z_2}) = \arg(e^{x_1 + iy_1}) + \arg(e^{x_2 + iy_2}) \end{aligned}$$

$$y_1 + y_2 = \arg\left(e^{x_1 + x_2 + i(y_1 + y_2)}\right) = \arg\left(e^{z_1 + z_2}\right)$$

The polar form once more

The polar form for the number a having modulus r and argument v was written

 $a = r \left(\cos v + i \sin v \right)$

In the future we shall write:

$$a=r\exp\left(iv
ight)=re^{iv}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc.

Polar form

The Complex

The polar form once more

De Moivre's formula

The polar form once more

The polar form for the number a having modulus r and argument v was written

$$a = r \left(\cos v + i \sin v \right)$$

In the future we shall write:

$$a = r \exp(iv) = re^{iv}$$

• Example. The polar form for $-\sqrt{3} - i$. Modulus: $\sqrt{\left(-\sqrt{3}\right)^2 + (-1)^2} = 2$. An argument is $-\frac{5\pi}{6}$. Thus $-\sqrt{3} - i = 2\exp\left(-i\frac{5\pi}{6}\right) = 2e^{-i\frac{5\pi}{6}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Division? Real and imaginary parts etc. Polar form I Polar form II

The Complex Exponential

The polar form once more

De Moivre's formula

For $n \in N$ og $\theta \in R$ gælder

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential

The polar form once more

De Moivre's formula

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

For
$$n \in N$$
 og $\theta \in R$ gælder

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$

Proof:

 $(\cos\theta + i\sin\theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i\sin n\theta$

Preben Alsholm

Complex Numbers

Sets of numbers Rules for addition and multiplication What is a Cauchy sequence?

Description of the complex numbers

Real and imaginary parts etc. Polar form I Polar form II The Complex Exponential The polar form once

De Moivre's formula

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

• For
$$n \in N$$
 og $\theta \in R$ gælder
 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
• Proof:
 $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta$
• Example.
 $\cos 3x = \operatorname{Re}(\cos 3x + i \sin 3x) = \operatorname{Re}((\cos x + i \sin x)^3)$
 $= \operatorname{Re}(\cos^3 x + 3i \cos^2 x \sin x - 3 \cos x \sin^2 x - i \sin \frac{1}{16} \cos^2 x)^{1/2}$ rom once
 $= \cos^3 x - 3 \cos x \sin^2 x = \cos^3 x - 3 \cos x (1 - \cos^2 x))^{1/2}$

Preben Alsholm

• For
$$n \in N$$
 og $\theta \in R$ gælder
 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
• Proof:
 $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta$
• Example.
 $\cos 3x = \operatorname{Re}(\cos 3x + i \sin 3x) = \operatorname{Re}((\cos x + i \sin x)^3)$
 $= \operatorname{Re}(\cos^3 x + 3i \cos^2 x \sin x - 3 \cos x \sin^2 x - i \sin x)^2$
 $= \cos^3 x - 3 \cos x \sin^2 x = \cos^3 x - 3 \cos x (1 - \cos^2 x))^2$ for once
 $= \cos^3 x - 3 \cos x$
• By replacing Re with Im above we get the formula
 $\sin 3x = 3 \cos^2 x \sin x - \sin^3 x$
 $= -4 \sin^3 x + 3 \sin x$

Preben Alsholm